In situ Immobilization of Copper Nanoparticles on Polydopamine Coated Graphene Oxide for H2O2 Determination

نویسندگان

  • Yingzhu Liu
  • Yanwei Han
  • Rongsheng Chen
  • Haijun Zhang
  • Simin Liu
  • Feng Liang
چکیده

Nanostructured electrochemical sensors often suffer from irreversible aggregation and poor adhesion to the supporting materials, resulting in reduced sensitivity and selectivity over time. We describe a versatile method for fabrication of a H2O2 sensor by immobilizing copper nanoparticles (Cu NPs; 20 nm) on graphene oxide (GO) sheets via in-situ reduction of copper(II) on a polydopamine (PDA) coating on a glassy carbon electrode. The PDA film with its amino groups and catechol groups acts as both a reductant and an adhesive that warrants tight bonding between the Cu NPs and the support. The modified electrode, best operated at a working voltage of -0.4 V (vs. Ag/AgCl), has a linear response to H2O2 in the 5 μM to 12 mM concentration range, a sensitivity of 141.54 μA∙mM‾1∙cm‾2, a response time of 4 s, and a 1.4 μM detection limit (at an S/N ratio of 3). The sensor is highly reproducible and selective (with minimal interference to ascorbic acid and uric acid). The method was applied to the determination of H2O2 in sterilant by the standard addition method and gave recoveries between 97% and 99%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of graphene oxide / polydopamine composite for coating on clay substrate for water treatment

Water purification is a vital and essential thing for human life. The presence of pollutants in water is a major threat to the environment and human health. Various materials have been proposed and used for water treatment in recent years. Recent research has shown the potential of two-dimensional materials such as graphene oxide and its composites for water purification. The goal of this proje...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites.

A facile and universal approach to prepare graphene-based nanocomposites by in situ nucleation and growth of diverse noble metals, metal oxides and semiconducting nanoparticles on the surface of RGO is proposed.

متن کامل

Immobilization of Thermostable Lipase QLM on Core-Shell Structured Polydopamine-Coated Fe3O4 Nanoparticles

Here, core-shell structured polydopamine-coated Fe3O4 nanoparticles were constructed to immobilize thermostable lipase QLM from Alcaligenes sp. Systematical characterization indicated that lipase QLM was successfully immobilized on the surface of nanoparticles with an enzyme loading of 21.4 ± 1.47 mg/g immobilized enzyme. Then, the immobilized enzyme was demonstrated to possess favorable cataly...

متن کامل

Preconcentration of Pb(II) by Graphene Oxide with Covalently Linked Porphyrin Adsorbed on Surfactant Coated C18 before Determination by FAAS

A simple, highly sensitive, accurate and selective method for determination of trace amounts of Pb(II) in water samples is presented. A novel Graphene oxide with covalently linked porphyrin solid-phase extraction adsorbent was synthesized by covalently linked porphyrin onto the surfaces of graphite oxides. The stability of a chemically (GO-H2P) especially in concentrated hydrochloric acid was s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016